1,001 research outputs found

    The spectral variability of FSRQs

    Full text link
    The optical variability of 29 flat spectrum radio quasars in SDSS Stripe 82 region are investigated by using DR7 released multi-epoch data. All FSRQs show variations with overall amplitude ranging from 0.24 mag to 3.46 mag in different sources. About half of FSRQs show a bluer-when-brighter trend, which is commonly observed for blazars. However, only one source shows a redder-when-brighter trend, which implies it is rare in FSRQs. In this source, the thermal emission may likely be responsible for the spectral behavior.Comment: 4 pages, 1 figure, to be published in Journal of Astrophysics and Astronomy, as a proceeding paper of the conference "Multiwavelength Variability of Blazars", Guangzhou, China, September 22-24, 201

    Evidence for Two Modes of Synergistic Induction of Apoptosis by Mapatumumab and Oxaliplatin in Combination with Hyperthermia in Human Colon Cancer Cells

    Get PDF
    Colorectal cancer is the third leading cause of cancer-related mortality in the world-- the main cause of death from colorectal cancer is hepatic metastases, which can be treated with isolated hepatic perfusion (IHP). Searching for the most clinically relevant approaches for treating colorectal metastatic disease by isolated hepatic perfusion (IHP), we developed the application of oxaliplatin concomitantly with hyperthermia and humanized death receptor 4 (DR4) antibody mapatumumab (Mapa), and investigated the molecular mechanisms of this multimodality treatment in human colon cancer cell lines CX-1 and HCT116 as well as human colon cancer stem cells Tu-12, Tu-21 and Tu-22. We showed here, in this study, that the synergistic effect of the multimodality treatment-induced apoptosis was caspase dependent and activated death signaling via both the extrinsic apoptotic pathway and the intrinsic pathway. Death signaling was activated by c-Jun N-terminal kinase (JNK) signaling which led to Bcl-xL phosphorylation at serine 62, decreasing the anti-apoptotic activity of Bcl-xL, which contributed to the intrinsic pathway. The downregulation of cellular FLICE inhibitory protein long isoform (c-FLIPL) in the extrinsic pathway was accomplished through ubiquitination at lysine residue (K) 195 and protein synthesis inhibition. Overexpression of c-FLIPL mutant (K195R) and Bcl-xL mutant (S62A) completely abrogated the synergistic effect. The successful outcome of this study supports the application of multimodality strategy to patients with colorectal hepatic metastases who fail to respond to standard chemoradiotherapy that predominantly targets the mitochondrial apoptotic pathway. © 2013 Song et al

    Transposon Excision from an Atypical Site: A Mechanism of Evolution of Novel Transposable Elements

    Get PDF
    The role of transposable elements in sculpting the genome is well appreciated but remains poorly understood. Some organisms, such as humans, do not have active transposons; however, transposable elements were presumably active in their ancestral genomes. Of specific interest is whether the DNA surrounding the sites of transposon excision become recombinogenic, thus bringing about homologous recombination. Previous studies in maize and Drosophila have provided conflicting evidence on whether transposon excision is correlated with homologous recombination. Here we take advantage of an atypical Dissociation (Ds) element, a maize transposon that can be mobilized by the Ac transposase gene in Arabidopsis thaliana, to address questions on the mechanism of Ds excision. This atypical Ds element contains an adjacent 598 base pairs (bp) inverted repeat; the element was allowed to excise by the introduction of an unlinked Ac transposase source through mating. Footprints at the excision site suggest a micro-homology mediated non-homologous end joining reminiscent of V(D)J recombination involving the formation of intra-helix 3′ to 5′ trans-esterification as an intermediate, a mechanism consistent with previous observations in maize, Antirrhinum and in certain insects. The proposed mechanism suggests that the broken chromosome at the excision site should not allow recombinational interaction with the homologous chromosome, and that the linked inverted repeat should also be mobilizable. To test the first prediction, we measured recombination of flanking chromosomal arms selected for the excision of Ds. In congruence with the model, Ds excision did not influence crossover recombination. Furthermore, evidence for correlated movement of the adjacent inverted repeat sequence is presented; its origin and movement suggest a novel mechanism for the evolution of repeated elements. Taken together these results suggest that the movement of transposable elements themselves may not directly influence linkage. Possibility remains, however, for novel repeated DNA sequences produced as a consequence of transposon movement to influence crossover in subsequent generations

    Quantitation of Human Seroresponsiveness to Merkel Cell Polyomavirus

    Get PDF
    Merkel cell carcinoma (MCC) is a relatively uncommon but highly lethal form of skin cancer. A majority of MCC tumors carry DNA sequences derived from a newly identified virus called Merkel cell polyomavirus (MCV or MCPyV), a candidate etiologic agent underlying the development of MCC. To further investigate the role of MCV infection in the development of MCC, we developed a reporter vector-based neutralization assay to quantitate MCV-specific serum antibody responses in human subjects. Our results showed that 21 MCC patients whose tumors harbored MCV DNA all displayed vigorous MCV-specific antibody responses. Although 88% (42/48) of adult subjects without MCC were MCV seropositive, the geometric mean titer of the control group was 59-fold lower than the MCC patient group (p<0.0001). Only 4% (2/48) of control subjects displayed neutralizing titers greater than the mean titer of the MCV-positive MCC patient population. MCC tumors were found not to express detectable amounts of MCV VP1 capsid protein, suggesting that the strong humoral responses observed in MCC patients were primed by an unusually immunogenic MCV infection, and not by viral antigen expressed by the MCC tumor itself. The occurrence of highly immunogenic MCV infection in MCC patients is unlikely to reflect a failure to control polyomavirus infections in general, as seroreactivity to BK polyomavirus was similar among MCC patients and control subjects. The results support the concept that MCV infection is a causative factor in the development of most cases of MCC. Although MCC tumorigenesis can evidently proceed in the face of effective MCV-specific antibody responses, a small pilot animal immunization study revealed that a candidate vaccine based on MCV virus-like particles (VLPs) elicits antibody responses that robustly neutralize MCV reporter vectors in vitro. This suggests that a VLP-based vaccine could be effective for preventing the initial establishment of MCV infection

    Analysis of In-Vivo LacR-Mediated Gene Repression Based on the Mechanics of DNA Looping

    Get PDF
    Interactions of E. coli lac repressor (LacR) with a pair of operator sites on the same DNA molecule can lead to the formation of looped nucleoprotein complexes both in vitro and in vivo. As a major paradigm for loop-mediated gene regulation, parameters such as operator affinity and spacing, repressor concentration, and DNA bending induced by specific or non-specific DNA-binding proteins (e.g., HU), have been examined extensively. However, a complete and rigorous model that integrates all of these aspects in a systematic and quantitative treatment of experimental data has not been available. Applying our recent statistical-mechanical theory for DNA looping, we calculated repression as a function of operator spacing (58–156 bp) from first principles and obtained excellent agreement with independent sets of in-vivo data. The results suggest that a linear extended, as opposed to a closed v-shaped, LacR conformation is the dominant form of the tetramer in vivo. Moreover, loop-mediated repression in wild-type E. coli strains is facilitated by decreased DNA rigidity and high levels of flexibility in the LacR tetramer. In contrast, repression data for strains lacking HU gave a near-normal value of the DNA persistence length. These findings underscore the importance of both protein conformation and elasticity in the formation of small DNA loops widely observed in vivo, and demonstrate the utility of quantitatively analyzing gene regulation based on the mechanics of nucleoprotein complexes

    Engineering Corynebacterium glutamicum for isobutanol production

    Get PDF
    The production of isobutanol in microorganisms has recently been achieved by harnessing the highly active 2-keto acid pathways. Since these 2-keto acids are precursors of amino acids, we aimed to construct an isobutanol production platform in Corynebacterium glutamicum, a well-known amino-acid-producing microorganism. Analysis of this host’s sensitivity to isobutanol toxicity revealed that C. glutamicum shows an increased tolerance to isobutanol relative to Escherichia coli. Overexpression of alsS of Bacillus subtilis, ilvC and ilvD of C. glutamicum, kivd of Lactococcus lactis, and a native alcohol dehydrogenase, adhA, led to the production of 2.6 g/L isobutanol and 0.4 g/L 3-methyl-1-butanol in 48 h. In addition, other higher chain alcohols such as 1-propanol, 2-methyl-1-butanol, 1-butanol, and 2-phenylethanol were also detected as byproducts. Using longer-term batch cultures, isobutanol titers reached 4.0 g/L after 96 h with wild-type C. glutamicum as a host. Upon the inactivation of several genes to direct more carbon through the isobutanol pathway, we increased production by ∼25% to 4.9 g/L isobutanol in a ∆pyc∆ldh background. These results show promise in engineering C. glutamicum for higher chain alcohol production using the 2-keto acid pathways

    Methylation screening of the TGFBI promoter in human lung and prostate cancer by methylation-specific PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypermethylation of the <it>TGFBI </it>promoter has been shown to correlate with decreased expression of this gene in human tumor cell lines. In this study, we optimized a methylation-specific polymerase chain reaction (MSP) method and investigated the methylation status of the <it>TGFBI </it>promoter in human lung and prostate cancer specimens.</p> <p>Methods</p> <p>Methylation-specific primers were designed based on the methylation profiles of the <it>TGFBI </it>promoter in human tumor cell lines, and MSP conditions were optimized for accurate and efficient amplification. Genomic DNA was isolated from lung tumors and prostatectomy tissues of prostate cancer patients, bisulfite-converted, and analyzed by MSP.</p> <p>Results</p> <p>Among 50 lung cancer samples, 44.0% (22/50) harbored methylated CpG sites in the <it>TGFBI </it>promoter. An analysis correlating gene methylation status with clinicopathological cancer features revealed that dense methylation of the <it>TGFBI </it>promoter was associated with a metastatic phenotype, with 42.9% (6/14) of metastatic lung cancer samples demonstrating dense methylation vs. only 5.6% (2/36) of primary lung cancer samples (<it>p </it>< 0.05). Similar to these lung cancer results, 82.0% (41/50) of prostate cancer samples harbored methylated CpG sites in the <it>TGFBI </it>promoter, and dense methylation of the promoter was present in 38.9% (7/18) of prostate cancer samples with the feature of locoregional invasiveness vs. only 19.4% (6/31) of prostate cancer samples without locoregional invasiveness (<it>p </it>< 0.05). Furthermore, promoter hypermethylation correlated with highly reduced expression of the <it>TGFBI </it>gene in human lung and prostate tumor cell lines.</p> <p>Conclusion</p> <p>We successfully optimized a MSP method for the precise and efficient screening of <it>TGFBI </it>promoter methylation status. Dense methylation of the <it>TGFBI </it>promoter correlated with the extent of <it>TGFBI </it>gene silencing in tumor cell lines and was related to invasiveness of prostate tumors and metastatic status of lung cancer tumors. Thus, <it>TGFBI </it>promoter methylation can be used as a potential prognostic marker for invasiveness and metastasis in prostate and lung cancer patients, respectively.</p

    GNE Is Involved in the Early Development of Skeletal and Cardiac Muscle

    Get PDF
    UDP-N-acetylglucosamine 2 epimerase/N-acetylmannosamime kinase (GNE) is a bifunctional enzyme which catalyzes the two key sequential steps in the biosynthetic pathway of sialic acid, the most abundant terminal monosaccharide on glycoconjugates of eukaryotic cells. GNE knock out (GNE KO) mice are embryonically lethal at day E8.5. Although the role of GNE in the sialic pathway has been well established as well as the importance of sialylation in many diverse biological pathways, less is known about the involvement of GNE in muscle development. To address this issue we have studied the role of GNE during in vitro embryogenesis by comparing the developmental profile in culture of embryonic stem cells (ES) from wild type and from GNE KO E3.5 mice embryos, during 45 days. Neuronal cells appeared rarely in GNE KO ES cultures and did not reach an advanced differentiated stage. Although primary cardiac cells appeared at the same time in both normal and GNE KO ES cultures, GNE KO cardiac cells degraded very soon and their beating capacity decayed rapidly. Furthermore very rare skeletal muscle committed cells were detected in the GNE KO ES cultures at any stage of differentiation, as assessed by analysis of the expression of either Pax7, MyoD and MyHC markers. Beyond the supporting evidence that GNE plays an important role in neuronal cell and brain development, these results show that GNE is strongly involved in cardiac tissue and skeletal muscle early survival and organization. These findings could open new avenues in the understanding of muscle function mechanisms in health and in disease

    Histologic assessment of biliary obstruction with different percutaneous endoluminal techniques

    Get PDF
    BACKGROUND: Despite the sophisticated cross sectional image techniques currently available, a number of biliary stenosis or obstructions remain of an uncertain nature. In these pathological conditions, an "intrinsic" parietal alteration is the cause of biliary obstruction and it is very difficult to differentiate benign from malignant lesions using cross-sectional imaging procedures alone. We evaluated the efficacy of different endoluminal techniques to achieve a definitive pathological diagnosis in these situations. METHODS: Eighty patients underwent brushing, and or biopsy of the biliary tree through an existing transhepatic biliary drainage route. A subcoort of 12 patients needed balloon-dilatation of the bile duct and the material covering the balloon surface was also sent for pathological examination (balloon surface sampling). Pathological results were compared with surgical findings or with long-term clinical and instrumental follow-ups. Success rates, sensitivity, specificity, accuracy, confidential intervals, positive predictive value and negative predictive value of the three percutaneous techniques in differentiating benign from malignant disease were assessed. The agreement coefficient of biopsy and brushing with final diagnosis was calculated using the Cohen's "K" value. RESULTS: Fifty-six patients had malignant strictures confirmed by surgery, histology, and by clinical follow-ups. Success rates of brushing, balloon surface sampling, and biopsy were 90.7, 100, and 100%, respectively. The comparative efficacy of brushing, balloon-surface sampling, and biopsy resulted as follows: sensitivity of 47.8, 87.5, and 92.1%, respectively; specificity of 100% for all the techniques; accuracy of 69.2, 91.7 and 93.6%, Positive Predictive Value of 100% for all the procedures and Negative Predictive Value of 55, 80, and 75%, respectively. CONCLUSIONS: Percutaneous endoluminal biopsy is more accurate and sensitive than percutaneous bile duct brushing in the detection of malignant diseases (p < 0.01)
    corecore